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Summary 15 

High mercury concentrations are observed in cassava, maize, and peanuts (groundnuts) near an 16 

ASGM site. Stable Hg isotopes indicate atmospheric uptake (foliar assimilation) is the dominant 17 

mercury uptake mechanism and transfer pathway to other crop tissues in these unsaturated soil 18 

crops. 19 

Abstract 20 

This study investigates mercury (Hg) biogeochemical cycling and Hg uptake mechanisms in three 21 

common staple crops at a contaminated farm (Farm1) ≈500m from an artisanal and small-scale gold 22 

mining (ASGM) processing site (PS) and a background farm (Farm2; ≈8km upwind) in Nigeria. We 23 

examine air, soil, and various crop tissues using total Hg (THg), Hg stable isotope, Hg speciation, and 24 

methyl-Hg (MeHg) analyses. Results show elevated gaseous elemental Hg (GEM) levels in the air 25 

(mean concentrations: 1200 ± 400 ng m-3) and soil (mean THg concentration: 2470± 1640 µg kg-1) at 26 

the PS, significantly higher than those at Farm1 (GEM: 54 ± 19 ng m-3; THg: 76.6 ± 59.7 µg kg-1), which 27 

are in turn significantly higher than background site, Farm2 (GEM: 1.7 ng m-3; THg: 11.3 ± 8 µg kg-1). 28 

These data confirm the ASGM-derived Hg contamination at the PS and the exposures of crops at 29 
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Farm1 to elevated levels of Hg in both air and soil. Aligning with Hg concentrations in air and soil, 30 

Farm1 had significantly high THg concentration in all crop tissues compared to Farm2. At Farm1, 31 

foliage exhibits the highest THg concentrations in tissues across all crops (up to 385 ± 20 µg kg-1 in 32 

peanuts). These data, along with highly negative δ202Hg values in foliage and other crop tissues 33 

(indicative of light Hg isotope enrichment imparted during stomatal assimilation of Hg) demonstrate 34 

atmospheric uptake of GEM as the primary uptake pathway for Hg in these crops. We observe air-to-35 

foliage mass dependent enrichment factors (ε202Hg) of -2.60±0.35, -2.54±0.35, and -1.28±0.43‰ for 36 

cassava, peanuts, and maize, respectively. While our two-endmember mixing model shows Hg in 37 

crop roots is influenced by both soil (59-74%) and atmospheric (26-41%) uptake pathways, we 38 

suggest soil Hg in roots is largely associated with root epidermis/cortex (external root tissues) and 39 

little soil derived Hg is transferred to above ground tissues (<7% across all crops). The lower THg 40 

concentrations in edible parts (with the exception of cassava leaves, commonly eaten in Nigeria) 41 

indicate that even translocation from foliage to other tissues is a relatively slow process. MeHg 42 

concentrations were <1% across all tissues and probable dietary intakes (PDI) for both MeHg and 43 

THg based on typical diets in Nigeria are all below reference dose thresholds, indicating these crops 44 

are low health risk to the local population.  45 

1 Introduction  46 

Artisanal and small-scale gold mining (ASGM) is generally defined as mining activities related to the 47 

extraction of gold that involves minimal (or no) mechanisation undertaken by individuals or small 48 

groups/cooperatives whose participation in these activities ranges from regulated to informal 49 

(illegal); specific definitions can vary between jurisdictions (Hentschel et al., 2002; Seccatore et al., 50 

2014). In recent years, the ASGM sector has grown exponentially, driven by rising gold prices and the 51 

ease of selling gold (World Gold Council, 2019; Verbrugge and Geenen, 2019; Achina-Obeng and 52 

Aram, 2022). Currently, ASGM contributes ≈20-30% of global gold production (PlanetGOLD, 2022), 53 

especially in emerging economies where it serves as a vital source of livelihood for many 54 

communities. Despite attempts to regulate mercury (Hg) use in ASGM under the Minamata 55 

Convention (UNEP, 2013), elemental Hg (Hg(0)) use remains a fundamental part of gold processing 56 

in ASGM due to the effectiveness and simplicity of the Hg-gold amalgamation process (Viega et al., 57 

2006; Bugmann et al., 2022) and the general preference of miners for Hg-amalgamation (Hinton, 58 

2003; Jønsson et al., 2013). 59 
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ASGM is now considered the largest global source of anthropogenic Hg emissions (Streets et al., 60 

2019; Munthe et al., 2019; Yoshimura et al., 2021). Recent estimates suggest that ASGM emits 838 ± 61 

163 Mg of Hg to air (almost entirely as gaseous Hg(0): GEM) and releases 1221±637 Mg of inorganic 62 

Hg forms, Hg(0) and divalent Hg (Hg(II)) to land and rivers annually (Munthe et al., 2019). The 63 

continued rapid growth of the sector in the decade since the ratification and implementation of the 64 

Minamata Convention raises questions about the effectiveness of the measures introduced by the 65 

Convention in reducing the use and impacts of Hg in ASGM. Such concerns are largely driven by 66 

growth in illegal mining, a thriving illicit, international trade market of Hg, and the criminal networks 67 

tied to both issues (Verité, 2016; UNEP, 2017; Lewis et al., 2019; Marshall et al., 2020; Cheng et al., 68 

2022). These security issues also present a major barrier to the implementation of more effective and 69 

holistic study of Hg use and impacts in ASGM areas (Moreno-Brush, 2021). 70 

GEM has a long atmospheric residence time (≈6-18 months), and long-range atmospheric transport 71 

is the dominant mechanism for the global redistribution of Hg (Ariya et al., 2015). Hence, Hg emitted 72 

from sources such as ASGM can have impacts on human and environmental health in areas great 73 

distances from these activities (Bose-O’Reilly et al., 2010; Weinhouse et al., 2021). Work in recent 74 

decades has shown that terrestrial plants play a critical role in the global Hg cycle, acting as the 75 

primary sink of atmospheric Hg in terrestrial systems through the assimilation of GEM into foliar 76 

stomata during photosynthesis (a mechanism of GEM dry deposition) and subsequent storage within 77 

plant tissues (Jiskra et al., 2018; Obrist et al., 2021). This is observed in trees, grasses (e.g. Millhollen 78 

et al., 2006; Mao et al., 2013; Assad et al., 2016), and crops like rice, wheat, and corn (e.g. Niu et al., 79 

2011; Yin et al., 2013; Sun et al., 2019). Total Hg (THg) concentrations in plant foliage (and other above 80 

ground tissues) are proportional to local GEM concentrations (Millhollen et al., 2006; Fu et al., 2016; 81 

Sun et al., 2019; Wang et al., 2020). Another potential uptake pathway of atmospheric Hg in plants is 82 

sorption to and transfer through the foliage cuticle. Yet wash-off by precipitation, revolatilisation of 83 

sorbed Hg, and the likely slow transfer through the cuticle result in this uptake mechanism being 84 

minor compared to the stomatal assimilation pathway (Rea et al., 2000; Rutter et al., 2011a; 2011b; 85 

Laacouri et al., 2013). While there is potential for plants to also take up Hg from soil via roots, a large 86 

body of research indicates that >90% of Hg in the above-ground biomass of plants is derived from 87 

the air-foliage pathway with the root epidermis/cortex providing an effective barrier for the less 88 

bioavailable forms of Hg found in soils (Beauford et al., 1977; Rutter et al., 2011b; Zhou et al., 2021). 89 

A major exception to this is the uptake of the more bioaccumulative and toxic methyl-Hg (MeHg) in 90 

species growing in saturated soils such as rice (Qui et al., 2007). 91 
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Critical to the advancements that have been made in understanding the importance of this GEM 92 

uptake mechanism by vegetation is the use of Hg stable isotope analyses in air, plants, soils, and 93 

precipitation samples. Hg has seven stable isotopes, which undergo both mass-dependent 94 

fractionation (MDF) and mass-independent fractionation (MIF) in the environment (Blum and 95 

Bergquist, 2007). MDF occurs during biogeochemical transformations, while processes causing MIF 96 

are rarer and linked largely to photochemical processes and some dark abiotic reactions; both MDF 97 

and MIF enable researchers to track Hg sources and identify in-situ transformation processes 98 

(Bergquist and Blum, 2009). For example, MDF is useful in tracking plant uptake, where foliage often 99 

shows large negative MDF shifts (-1 to -3 ‰ in δ202Hg) during stomatal assimilation compared to the 100 

δ202Hg isotope values of GEM in the surrounding air (Zhou et al., 2021, and references therein). After 101 

being taken up by leaf stomata, GEM is rapidly oxidised to divalent forms and can then translocate to 102 

other plant tissues, including stems, branches, bark, and seeds, supported by negative δ202Hg values 103 

in stem and seeds that closely resemble values of observed in foliage (Yin et al., 2013; Sun et al., 104 

2019; Liu et al., 2020; McLagan et al., 2022a).  105 

Significant gaps remain in our understanding of Hg uptake mechanisms, internal cycling, and 106 

associated health risks from Hg in crops particularly as this relates to the largest global 107 

anthropogenic emitter of Hg: ASGM. The limited number of studies examining Hg in crops affected 108 

by ASGM activities have primarily focussed on THg and occasionally also MeHg analyses, which may 109 

not fully capture the complexity of Hg dynamics in these systems. In addition, such studies have 110 

typically assumed soil-roots as the dominant Hg uptake mechanism (Suhadi et al., 2021; Addai-Arhin 111 

et al., 2023). 112 

In this study, we employ a multidisciplinary, total systems approach to comprehensively examine the 113 

dominant Hg uptake pathway, and internal translocation and storage of Hg in three staple crops in a 114 

Nigerian farm adjacent to ASGM activities. Air, soil, and a range of crop tissues (foliage, stems, roots, 115 

and tubers/grains) were assessed using a series of Hg analyses (THg, MeHg, Hg stable isotopes, and 116 

Hg speciation) to provide critical data on the biogeochemical cycling of Hg in agricultural regions 117 

impacted by ASGM and preliminary assessment of the potential risks to human health from 118 

consuming these crops. 119 

2  METHODS 120 
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We note, methods described in this section are abbreviated due the need for conciseness and to the 121 

broad multidisciplinary approach utilised. Full details of the study site, sampling approaches, 122 

analytical methods, and quality assurance and quality control (QAQC) are provided in the 123 

supplementary information.  124 

2.1 Study Area 125 

The study is based around a mine (8.87126° N, 7.71828° E) and ASGM processing site (8.9012° N, 126 

7.7061° E) separated by ≈3.5 km and situated near the town of Uke (population: ≈20,000) in the Karu 127 

Local Government Area of Nasarawa State, ≈51 km southeast of Abuja, the capital city of Nigeria 128 

(Figure 1). ASGM in this area began around 2015 following the discovery of gold, which attracted a 129 

significant influx of miners and includes mining, ore processing with Hg, and amalgam burning 130 

(further details of the ASGM activities are described in Section S1).  131 

 132 

Figure 1: Map showing the study area showing mine, processing site (PS), Farm1, Farm2, 133 
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predominant winds in the region (Lorhemba and Mijinyawa, 2021), and an inset map indicating site 134 

and major Nigerian cities and the processing site marked by the ‘x’ (Basemap: ©OpenStreetMap 135 

Foundation). 136 

In July 2023, sampling was conducted at three sites: (1) the ASGM processing site (Site name: PS), 137 

(2) Farm1: situated ≈0.5 km north of the processing site, and (3) Farm2: a control farm located ≈8 km 138 

north-northwest of the processing site in another town with no known sources of Hg, ASGM or 139 

otherwise (Figure 1). Predominant winds in this region are from the west-southwest (Iorhemba and 140 

Mijinyawa, 2021); thus, there is potential for emissions from the processing site to impact Farm1 (but 141 

unlikely to influence Farm2). Critically, Farm1 is on the opposite side to the processing site to ensure 142 

surface or groundwater flows from the processing site were not contaminating the Farm1 soils. We 143 

note that the informal nature of ASGM restricted sampling to the scope outlined below, and this was 144 

by invitation and allowable concession of the operators of the legally operating site, local and 145 

national governmental authorities, and the farmers themselves. This was particularly limiting to the 146 

number Hg stable isotope samples that could be collected for each crop and crop tissue type.  147 

2.2 Soil sampling 148 

Surface soil samples (0 – 10 cm) were collected from the PS (n=13), Farm1 (n=8), and Farm2 (n=5) 149 

(farm soils were sampled directly around sampled plants) using standard sampling procedures 150 

(USEPA, 2023). Full details of the soil sampling procedures are provided in Section S2.  151 

2.3 Air sampling 152 

Considering the substantial emissions of Hg to air from ASGM and the potential for GEM uptake by 153 

vegetation (crops), it was critical to assess GEM concentrations. Hg passive air samplers (MerPAS; 154 

Tekran Instruments Corp.) were deployed according to the guidelines of the developers (McLagan et 155 

al., 2016), and modifications were made for deployments in highly contaminated areas (shorter 156 

deployments and extreme care in sampler transport and storage) (McLagan et al., 2019; Tekran 157 

Instruments, 2020; Si et al., 2020). MerPAS were deployed for ≈72 hours as PS (n=3), ≈144 hours at 158 

Farm1 (n=6), and ≈100 days at (control) Farm2 (n=1). See Section S2 for full details on MerPAS 159 

deployments (including blank details) and Table S7.1 for specific sampling periods.  160 

2.4 Crop sampling 161 

Foliage, stem, grains/tubers, and roots samples of three crops cultivated in both Farm1 and Farm2: 162 
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maize (Zea mays), cassava (Manihot esculenta), and peanuts (Arachis hypogaea) were collected. We 163 

note that in cassava, tubers are true roots, but we classify “roots” as undeveloped (no tuber) 164 

adventitious roots/rootlets (Rees et al., 2012). Cassava and maize were nearing maturity at the time 165 

of sampling and ≈1-2 months (or less) before harvest, while peanuts were fully mature and being 166 

harvested at the time of sampling. Three whole plants of each crop at each farm were removed from 167 

the soil for sampling with care made to consolidate below ground tissues with each selected plant. 168 

Due to sampling availability and access restrictions placed by farmers, the community, and mine 169 

owners we could not deviate from this sample timing (and quantity). Full Details of crop sampling 170 

procedures are provided in Section S2.  171 

2.5 Analytical Procedures 172 

2.5.1 Solid-phase THg analyses  173 

THg analysis for soil and plant samples (0.01 – 0.2 g aliquots) was carried out by thermal desorption, 174 

gold amalgamation, and atomic adsorption spectrometry according to USEPA Method 7473 (USEPA, 175 

2007) using a MA-3000 direct Hg analyser (Nippon Instruments Corp.). All tissue and soil samples 176 

were measured in triplicate for THg and full details of the analytical method are provided in Section 177 

S3. THg concentration analysis of MerPAS samples also utilised the MA-3000 Direct Hg Analyser 178 

(with ≈0.1 g additions of pre-cleaned sodium carbonate) and followed methods developed by 179 

McLagan et al. (2016) with some refinements (including a verified 400°C maximum combustion 180 

temperature) detailed in Section S3. Calculations of GEM concentrations (ng m-3) followed methods 181 

described by McLagan et al. (2016) and further details are provided in Section S3. MerPAS samples 182 

used for Hg stable isotope analyses of GEM were corrected for the MDF offset (measured δ202Hg +1.1 183 

± 0.2 ‰) as posited by Szponar et al. (2020).  184 

Quality assurance and quality control (QAQC) were exercised using replication of all THg sample 185 

analyses (2-3 replicates), and regular (after every 10 sample runs) analyses of (matrix matched) 186 

certified reference materials (CRMs) and the internal liquid Hg standard. All recoveries were within 187 

accepted ranges and specific details on the CRMs used and recovery data are presented in Table 188 

S3.1. All data are presented on a dry-weight (dw) basis.  189 

2.5.2 Hg stable isotopes: extractions and analyses  190 

All samples analysed for Hg stable isotopes were trapped off the exhaust of the MA3000 detector 191 

https://doi.org/10.5194/egusphere-2025-1402
Preprint. Discussion started: 8 April 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

during solid-phase THg analyses of the same matrix. The combust and trap method broadly followed 192 

methods by Enrico et al. (2021) and McLagan et al. (2022b) with some modifications. This method 193 

allows accumulation of Hg from matrix matched samples measured for solid-phase THg 194 

concentrations within a single 5 or 10 mL inverse aqua regia (3:1 concentrated HNO3:HCl diluted to 195 

40% v/v with DI water) trap. MA-3000 combustion method followed the matrix specific methods 196 

described in Section S3. A heated (≈60 °C) polytetrafluoroethylene (PTFE) tube connected a coarse 197 

frit gas dispersion sparger (6 mm outer diameter; modified to 25 cm length) was connected to the 198 

MA-3000 detector outlet. Trapping samples analysed for THg concentrations allows for direct 199 

recovery testing between the measured THg solid-phase concentrations to the liquid-phase THg 200 

concentrations within the trap, which removes the uncertainty of assuming homogenous THg solid-201 

phase concentrations. Any sample with recovery below 80% was not considered for Hg stable 202 

isotope analyses due to concerns that losses during extraction/analyses could artificially induce 203 

isotope fractionations. Recoveries of all samples analysed for Hg stable isotopes are listed in Table 204 

S3.3. All samples were diluted to a 20% acid strength (by volume) for Hg stable isotope analyses.  205 

An online cold vapor generator (CETAC-HGX-200) was used to reduce Hg(II) in the trapping solutions 206 

into Hg(0) vapor by SnCl2 (3% w/v in 1 M HCl). Using this system, gas-phase Hg(0) is then introduced 207 

into a multi-collector inductively coupled mass spectrometry (MC-ICP-MS, Thermo-Finnigan 208 

Neptune) for analyses of Hg stable isotopes at the Observatoire Midi-Pyrenees (Toulouse, France). 209 

Full details of instrument setup can be found in Sun et al., 2013. Sample isotope ratios were 210 

corrected for mass bias by sample-standard bracketing using NIST 3133 (Blum and Bergquist, 2007; 211 

Sun et al., 2013). Results are reported as δ-values in per mil (‰) by referencing to NIST 3133, 212 

representing Hg mass-dependent fractionation (MDF), while MIF is reported in “capital delta” 213 

notation (Δ), which is the difference between the measured values and those predicted by the kinetic 214 

MDF law using equations previously stated (Blum and Bergquist, 2007). The quality control of Hg 215 

isotope measurements was assessed by analysing ETH-Fluka, and UM Almaden reference standards 216 

and these data are presented in Table S3.3. Uncertainties on sample δ and Δ-signatures were 217 

conservatively estimated as the larger of the 2 standard deviation uncertainties on weekly ETH-Fluka, 218 

UM-Almaden or sample replicates (Table S3.3). 219 

2.5.3 Hg Speciation Analyses 220 

Solid-phase speciation was performed using the pyrolytic thermal desorption (PTD) method 221 

developed by Biester and Scholz (1996) adapted for use on a Lumex 915M with PYRO-915+ Module 222 
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(Lumex Instruments Corp.) by Mashyanov et al. (2017). Due to the inherent uncertainties and 223 

challenges in peak identification of Hg(II) species, these analyses are considered qualitative and 224 

complementary (McLagan et al., 2022b). Further details of this method are provided in Section S3.  225 

2.5.4 Methyl-Hg (MeHg) Analyses 226 

MeHg concentrations were determined using isotope dilution method and followed methods 227 

described in Mitchell and Gilmour (2008). A detailed description of this method is provided in Section 228 

S3. All QAQC data for MeHg analyses are presented in Table S3.2. 229 

2.6 Two endmember mixing model to identify Hg sources within crops 230 

A two-endmember mixing model using the (1) δ202Hg values of foliage for each crop and (2) the mean 231 

δ202Hg value for Farm1 soils was used to quantitatively determine source pathways for Hg in internal 232 

crop tissues according to Equation S4.1 (Section S4). 233 

2.7 Estimates of annual Hg dry deposition rates to crops 234 

Hg(0) dry deposition rates (FHg(0):AGB; g km-2) via the foliar uptake pathway to the aboveground biomass 235 

(AGB) for each crop were calculated using Equations S5.1 and S5.2 adapted from Casagrande et al. 236 

(2020) with additions relating to the transfer of Hg to other above ground tissues and the transfer to 237 

edible below ground parts (for peanuts and cassava). This was achieved using annual edible biomass 238 

yields and the fraction of Hg in tubers/nuts derived from a foliage-based two-endmember mixing 239 

model (Table 1). Details of these calculations are provided in Section S5. 240 

2.8 Probable daily intake calculations 241 

We also calculated the probable daily intake (PDI) of MeHg and Hg(II) using the method from Zhao et 242 

al. (2019) adapted for MeHg and Hg(II) and the concentrations measured in the examined crops and 243 

their mean dietary intake data for adults in Nigeria. Specific equations and data used in these 244 

calculations and the PDI data generated are presented in Section S6. 245 

2.9 Statistical Analyses 246 

Statistical tests (Welch’s T-test; unequal variances and sample sizes) used to assess differences in 247 

THg concentrations and Hg stable isotopes, data analyses, and figure generations were all generated 248 

in R-Studio (Boston, USA). 249 
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3 Results and Discussion 250 

3.1 Crop exposure levels: Hg concentrations in air and soils 251 

Highly elevated GEM concentrations (1200 ± 400 ng m-3) were observed at the ASGM processing site 252 

(PS) (Figure 2). These concentrations are ≈1000x background concentrations and consistent with 253 

levels observed in other ASGM regions where Hg is used in ASGM activities (González-Carrasco et 254 

al., 2011; Kawakami et al., 2019; Nakazawa et al., 2021; Snow et al., 2021) and indicate substantial 255 

Hg use and emissions at PS. At Farm1 (≈500m distance from PS), GEM concentrations were 256 

significantly lower than at PS (p=0.014), but remained elevated (54 ± 19 ng m-3) above background, 257 

confirming exposure of Farm1 to GEM emissions from ASGM activities at PS. In contrast, GEM 258 

concentrations at Farm2 (1.7 ng m-3, n=1) were consistent with the Northern Hemisphere background 259 

concentrations (≈1.5 – 2 ng m-3; Sprovieri et al., 2016).  260 

 261 

Figure 2: THg concentrations in soils (left; µg kg-1) and GEM concentrations in air (right; ng m-3) for all 262 

sampling sites. 263 

Stable isotope measurements of GEM at sites exposed to elevated GEM concentrations were 264 

indicative of more negative MDF and more positive MIF signatures (PS: δ²⁰²Hg: -1.38 ± 0.21 ‰, ∆¹⁹⁹Hg: 265 

0.07 ± 0.03 ‰; Farm1: δ²⁰²Hg: -0.94 ± 0.19 ‰, ∆¹⁹⁹Hg: 0.08 ± 0.08 ‰) (Figure 4), which is typical of 266 

anthropogenic Hg emitted into air from industrial (Sonke et al., 2010; Fu et al., 2021; McLagan et al., 267 

2022b) and ASGM (Gerson et al., 2022; Szponar et al., 2025) sources. Contrastingly, GEM at Farm2 268 

was relatively enriched in heavier isotopes and had a slightly negative MIF signal (δ²⁰²Hg: -0.01 ± 0.19 269 

‰; ∆¹⁹⁹Hg: -0.12 ± 0.08 ‰) typical for GEM samples in background areas (Si et al., 2020; Szponar et 270 

al., 2020). We suspect that the rapid decline in GEM concentrations as we move away from the 271 

contamination source is influenced both by dilution with background air and by wind direction. 272 

Although GEM was not measured in areas downwind of the processing site, McLagan et al. (2019) 273 
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observed a more gradual decline in GEM in areas downwind (compared to upwind sites) of a former 274 

Hg mine that remained heavily contaminated by elemental Hg; we suggest a similar pattern is likely 275 

at our study site. The vegetation of the area itself may play a role in reducing GEM concentrations 276 

around the ASGM area by removing GEM from the atmosphere during plant growing seasons. An 277 

assessment of this flux is described below in Section 3.4.  278 

Similar to GEM, soil samples at PS were heavily contaminated (mean THg concentration:2470 ± 1640 279 

µg kg-1). Elevated soil Hg at the processing site is likely due to rapid GEM deposition from the 280 

atmosphere after emissions from amalgam burning and direct spills from improper handling of liquid 281 

Hg (Telmer and Viega, 2009). The large variation in soil THg concentrations at this site (see Table S4.1) 282 

also reflects the spatial heterogeneity of processing activities at PS where Hg-Au amalgamation, ore 283 

washing, amalgam burning, and other activities occur.  284 

Farm1 soils were also contaminated (mean THg concentration: 80.9 ± 60.1 µg kg-1), but similar to 285 

differences in GEM concentrations, Farm1 was 1-2 orders of magnitude (and significantly; p<0.001) 286 

lower than PS ≈500m away.  Hence, we suggest emissions of GEM from the PS and deposition directly 287 

to soils or via GEM assimilation into vegetation, litterfall, and decomposition as the dominant 288 

contamination pathway at Farm1, a mechanism now well described in the literature (Jiskra et al., 289 

2015; Obrist et al., 2017; Zhou and Obrist, 2021). Our results fall into the range of concentration (2 – 290 

5570 µg kg-3) recorded by Odukoya et al. (2020) from farmlands adjacent to an ASGM region in Niger 291 

state of Nigeria and farms impacted by ASGM in Brazil (81.7 ± 13.5 µg kg-1) (Casagrande et al., 2020). 292 

The latter study by Casagrande et al. (2020), is one of the only other studies examining Hg in ASGM 293 

impacted agricultural areas directly attributing elevated concentrations in farm plants and soils to 294 

the atmospheric transfer pathway. In contrast, Farm2 soils were significantly lower again than Farm1 295 

(p=0.029) and at background levels with a mean concentration of 11.3 ± 8.0 µg kg-1. 296 

All soil samples exhibited little variation in δ²⁰²Hg (PS: 0.29 ± 0.98 ‰; Farm1 -0.26 ± 0.43 ‰) and 297 

∆¹⁹⁹Hg MIF signal (PS: -0.09 ± 0.12 ‰; Farm 1 -0.07 ± 0.03 ‰). Nonetheless, the mean ∆¹⁹⁹Hg for 298 

GEM is slightly (but not significantly; p=0.073) higher than the mean value for soils. This suggests 299 

minor evidence of some MIF induced by photochemical reduction from the soils (Rose et al., 2015).  300 

3.2 Hg contamination and distribution in crops grown in ASGM impacted 301 

areas 302 

https://doi.org/10.5194/egusphere-2025-1402
Preprint. Discussion started: 8 April 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

With the confirmation of exposure levels in both air and soils at Farm1 and Farm2 (control), it was 303 

then critical to assess the degree to which this contamination is affecting staple crops grown in this 304 

area and determine the predominant uptake mechanism of Hg in these plants. The mean THg 305 

concentration in peanut (p=0.021), cassava (p=0.015), and maize (p=0.004) tissues were all 306 

significantly elevated at Farm1 compared to Farm2 (Figure 3 and Table S4.3). The highest THg 307 

concentrations were detected in foliage of peanuts and cassava at Farm1 (peanut: 385 ± 20 µg kg-1; 308 

cassava: 320 ± 116 µg kg-1) and Farm2 (peanut: 7.06 ± 2.74 µg kg-1; cassava: 13.2 µg kg-1) (Figure 3), 309 

which suggests that the stomatal assimilation pathway is likely the dominant uptake mechanism of 310 

Hg in cassava, and peanuts. While foliage THg concentrations were also elevated in maize (Farm1: 311 

182± 44 µg kg-1; Farm2: 5.16 µg kg-1), again demonstrating the likelihood of foliar Hg uptake, 312 

concentrations in maize roots were slightly higher (Farm1: 202 ± 136 µg kg-1; Farm2: 5.74 ± 3.73) than 313 

foliage. Roots also had the second highest concentration in peanuts and cassava. These data 314 

suggest potential for soil-to-root Hg uptake in all three crops, but the contribution of the uptake 315 

mechanisms will be examined in more detail in Section 3.3.  316 

Adjorololo-Gasokpoh et al. (2012) measured similar THg in cassava foliage (up to 177 µg kg-1) and 317 

tuber (up to 185 µg kg-1). Even though they did not observe any significant trends or differences 318 

between tissues, a novel component of their study was the division of cassava tuber into flesh, inner 319 

peel, and outer peel (Adjorololo-Gasokpoh et al., 2012). Division of root tissues into epidermis, 320 

cortex, and vascular bundle (or stele) and then analysis for THg and stable Hg isotopes in crops 321 

impacted by ASGM would provide critical insight into the effectiveness of epidermis and/or cortex in 322 

restricting Hg uptake into the vascular bundle of inner root, as has been suggested elsewhere (Rutter 323 

et al., 2011b; Lomonte et al., 2020; Yuan et al., 2022).  324 

  325 

Figure 3: THg concentration (µg kg-1) for all crop tissues at Farm1 and Farm2 326 

Similar results showing the highest crop tissue THg concentrations in ASGM affected farms are 327 

common in the literature (i.e., [cassava] Golow and Adzei, 2002; [cassava] Nyanza, et al., 2014; [soy: 328 
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Glycine max] Casagrande et al., 2020). However, we note the challenges of comparing absolute THg 329 

concentrations even of samples from the same species as distance from ASGM activities is likely a 330 

major determinant controlling observed levels of crop contamination and, in many cases, little 331 

specific information on source-receptor distances is provided (i.e., Essumang et al., 2007; 332 

Adjorololo-Gasokpoh et al., 2012; Nyanza et al., 2014).  333 

Of the three crops we studied, maize foliage exhibited lower THg concentrations than other crops, 334 

which may be attributed to maize’s C4 photosynthetic pathway. An earlier study by Browne and Fang 335 

(1983) found C3 plants to take up five times more atmospheric Hg than C4 species due to differences 336 

in leaf surface area, stomatal conductance (C3 plants exchange gases more readily with the 337 

atmosphere, allowing for greater uptake of atmospheric Hg), and internal resistance to Hg vapor 338 

uptake within the plant. Furthermore, maize kernels (1.78 ± 1.22 µg kg-1) contained the lowest 339 

concentration in all crops at Farm1 suggesting minimal translocation from foliage or roots as 340 

observed by Wang et al. (2024), which again may be attributable to physiological differences in C4 341 

species – a hypothesis that requires direct exploration in future research. Glauser et al. (2022) also 342 

suggest non-stomatal pathways can result in Hg sorption in certain maize tissues such as maize 343 

tassels and silk. Although cassava is an intermediate between C4 and C3 plants (exhibiting some 344 

properties of both C3 and C4 photosynthetic pathways (El-Sharkawy and Cook, 1987; Bräutigam and 345 

Gowik, 2016; Xia et al., 2023), THg concentrations in cassava were higher than those of maize. This 346 

phenomenon is, however, not yet fully understood and warrants further research. 347 

The concentration patterns for the crops were as follows: for maize, roots > foliage > stem > kernel; 348 

for peanuts, foliage > roots > nut > stem; and for cassava, foliage > roots > stem > tubers. All crops 349 

exhibited the lowest concentrations in their edible parts (kernel, nuts and tubers), except for the 350 

peanut stem, which was slightly lower than the nuts. This finding aligns with studies on rice in China, 351 

where the stem and seeds consistently showed the lowest THg concentrations across all measured 352 

sites (Yin et al., 2013). 353 

3.3 Tracing Uptake and Translocation of Hg Within Crops using Hg Stable 354 

Isotopes 355 

While THg quantifies the extent of overall Hg exposure in the examined crops, we have thus far neither 356 

been able to fully confirm the Hg uptake pathway nor explain translocation processes within the crop. 357 

We therefore applied Hg stable isotope analyses to investigate these processes in greater detail. 358 
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Foliage samples across all crops displayed highly negative MDF values with δ²⁰²Hg values being -3.83 359 

± 0.19 ‰ (2SD) for cassava, -3.77 ± 0.19 ‰ (2SD) for peanuts, and -2.51 ± 0.32 ‰ (1SD) for maize 360 

(Figure 4). MIF values were all near zero (Δ199Hg range: -0.04 – 0.03 ‰) (Figure 4). Sun et al. (2020) 361 

measured similar MDF values in maize foliage (-2.68 ± 0.28 ‰ (1SD). Yet they also observed more 362 

negative δ²⁰²Hg in higher concentration samples (Sun et al., 2020), which is likely linked to GEM 363 

influenced by anthropogenic sources having more negative δ²⁰²Hg. 364 

 365 

Figure 4. MDF (δ202Hg) and MIF (199Hg) for GEM at PS, Farm1 (F1), Farm2 (F2), soil samples at PS and 366 

Farm1 (F1), and crop tissues for Farm1 (F1) only. The direction of the arrows shows approximate MDF 367 

from air to foliage (stomatal assimilation; blue arrow), foliage to roots (green arrow), and soil to roots 368 

(red arrow). Note that cassava tubers are flesh only (no peel). 369 

Assuming all the Hg within foliage for these crops grown in unsaturated soils is derived from stomatal 370 

assimilation, we can use the mean Hg stable isotope values for GEM (MerPAS values from both PS 371 

and Farm1 to provide estimate variance)  to estimate the enrichment factors (indicated by ε for MDF 372 

and Ε for MIF) associated with the stomatal assimilation process for the stomatal assimilation 373 
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process in these crops. We calculate ε202Hg for stomatal assimilation to be -2.60 ± 0.35, -2.54 ± 0.35, 374 

and -1.28 ± 0.43 ‰ for cassava, peanuts, and maize, respectively, and these data represent the first 375 

time such fractionation factors have been calculated for any agricultural crops. These crop stomatal 376 

assimilation MDF enrichment factors fall within the range reported (-1 to -3 ‰) in other vegetation 377 

(Zhou et al., 2021; Liu et al., 2024; and references therein). There was a small MIF between GEM and 378 

foliage (Ε199Hg: cassava: -0.05 ‰; peanuts: -0.05 ‰; maize: -0.11 ‰), which is similar to the small 379 

range observed during this process elsewhere (Demers et al., 2013). The small negative MIF shift can 380 

be attributed to minor in-planta photochemical Hg(II) reduction (Demers et al., 2013) and is typically 381 

accompanied by an enrichment in the heavy Hg isotopes, and positive shift in δ²⁰²Hg; while 382 

speculative, this could again be attributable to differing physiological processes (i.e., C4 383 

photosynthesis).  384 

Crop root samples exhibited negative δ²⁰²Hg values (cassava: -1.46 ‰; peanuts; -1.91 ‰; maize:  ‰) 385 

that were distinct from both soil and foliage samples, while ∆¹⁹⁹Hg values were similar to those of soil 386 

and slightly more negative than GEM and foliage samples (Figure 4). We suggest that the Hg in roots 387 

reflects a combination of inputs from both soil and foliage (via stomatal assimilation). Since foliage 388 

is a source of energy to plants in the form of the photoassimilates they generate, which are exported 389 

to growth (meristems, cambium) and storage (roots, fruits, seeds) tissues via the phloem (Turgeon, 390 

2006), Hg is likely translocated similarly as has been posited in other studies (Zhou et al., 2021; 391 

McLagan et al., 2022a). For maize and peanut roots, PTD speciation analysis (see Figure S8.1) 392 

revealed the presence of two distinct Hg pools, which we suggest could be representative of distinct 393 

fractions of Hg in (i) the epidermis/cortex (likely derived from surrounding soils) and (ii) inner root 394 

tissues: vascular bundle/stele (likely derived from air/foliage).  395 

We also apply a two-endmember mixing model using the mean δ202Hg values of (i) GEM at Farm1 and 396 

PS, and (ii) soils at Farm1, minus the soil-to-shallow roots (roots above 150cm) MDF (ε202Hg: -0.35) 397 

from Yuan et al. (2022), as endmembers to introduce more quantitative assessment of the Hg uptake 398 

mechanisms (air/foliage vs soil) (Equation S4.1). Data reveal that between 47% (peanuts) and 66% 399 

(cassava) of Hg found in the roots of these crops is derived from air/foliage (Table 1). There is 400 

precedence for the transfer of Hg from foliage to roots with a previous study using Hg stable isotopes 401 

to indicate 44-83% of Hg in roots is derived from air in selected tree and shrub species (Wang et al., 402 

2020). These data support the hypothesis that the majority of Hg transferred from soil to roots is likely 403 

bound to outer root tissue (epidermis/cortex) as suggested elsewhere (Rutter et al., 2011b; Lomonte 404 
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et al., 2020). Again, root tissue sectioning and analysis for concentrations and stable Hg isotopes 405 

would provide the most conclusive evidence of such processes. 406 

Hg stable isotope data for other crop tissues provided further evidence of translocation of Hg away 407 

from foliage. Due to the lower concentration and limited available sample, stems could only be 408 

analysed for stable isotopes in cassava, and this one sample displayed almost identical MDF and 409 

MIF signatures to cassava foliage (93% derived from air/foliage; Table 1). Edible parts of maize 410 

(kernel; 100% from air/foliage) and cassava (tuber flesh; 95% from air/foliage) displayed similar 411 

patterns (Table 1). Studies on cassava in ASGM regions, such as those by Nyanza et al. (2014), have 412 

similarly demonstrated that Hg concentrations in cassava tubers remain low even in highly 413 

contaminated soils, emphasising the influence of foliar pathways. This contrasts with the common 414 

assumption that tubers accumulate Hg mainly through soil uptake (Adjorlolo-Gasokpoh et al., 2012). 415 

Table 1: Hg uptake source apportionment in crop tissues using two-endmember, Hg stable isotope 416 

mixing model. Foliage is not included as δ202Hg values for foliage represent one of the source 417 

endmembers for each crop. All estimates come with a ±16% uncertainty derived from propagating 418 

uncertainty terms through calculations. 419 

 Cassava Maize Peanut 
Source Stem Tuber flesh Root Kernel Roots Nut Roots 
Air/foliage 93% 95% 26% 100% 47% 61% 41% 
Soil/roots 7% 5% 74% 0% 53% 39% 59% 
 420 

The only exception to this was peanut nuts, which had a δ202Hg value more similar to roots (39% of 421 

nut THg derived from soil) and the most positive Δ199Hg value (0.08‰) of any sample across all 422 

studied matrices. While we do not have a clear explanation for the anomalous Δ199Hg value of the nut 423 

sample, we link the similar δ202Hg values between peanut roots and nuts to the subsurface growth of 424 

the nut. Cassava tubers also grow underground, but their physiological function is as a plant energy 425 

storage tissue (Rees et al, 2012) as opposed to the peanut nut, which is a seed used for reproduction 426 

(Basuchaudhuri, 2022). The transfer of Hg from soils, through peanut shells and into the nut is still 427 

somewhat surprising as other studies have shown the shell to be an effective barrier at preventing 428 

metal uptake to the nut (Tang et al., 2024) including for Hg (Namasivayam and Periasamy, 1993; 429 

Cobbina et al., 2018). Nonetheless, Liu et al. (2010) observed lower Hg adsorption efficiency by 430 

natural (compared to chemically modified) peanut shells; though, we note this was in a laboratory 431 

study of just shells (nuts removed). Multi-method analyses of peanut shells would be a useful 432 
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addition to future work. 433 

3.4 Foliage as an important sink of GEM in ASGM areas 434 

We also used Equations S4.2 and S4.3 to assess the annual GEM dry deposition flux from the 435 

atmosphere to these crops via stomatal assimilation. The GEM deposition rates from the atmosphere 436 

to leaves for peanuts, maize, and cassava were estimated to be 110±80, 690±130, and 1170±180 g 437 

km-2 yr-1, respectively. The relatively high GEM deposition rate observed for cassava shows the higher 438 

vulnerability of cassava to Hg uptake despite it being grown once annually. This may be due to its 439 

larger biomass compared to maize and peanuts. These data were substantially higher than the 13-440 

25 g km-2 yr-1 estimate for soybeans by Casagrande et al. (2020). While this is partly attributable to 441 

Casagrande et al. (2020) not accounting for transfer from foliage to other above or below ground 442 

tissues, our estimates were dominated by Hg storage in foliage (90-92% of total; see Table S5.1). 443 

Hence, we attribute the differences between the two estimates to differences in distances between 444 

ASGM activities and farms/crops, scale of ASGM operations, and different crop physiological uptake 445 

mechanisms. These data provide crucial insight into the role of crop foliage in sequestering 446 

atmospheric Hg in regions impacted by ASGM and can be useful in environmental monitoring and 447 

risk assessment. In regions with ongoing ASGM activities, these estimates could be used as 448 

baselines to monitor shifts in atmospheric Hg concentrations over time. For instance, if emissions 449 

from ASGM were to decline due to policy interventions, a corresponding reduction in annual Hg 450 

deposition rates would be expected. Conversely, if emissions increase, these crops could serve as 451 

bioindicators for heightened atmospheric contamination. 452 

3.5 Human health implications 453 

MeHg concentration data is typically considered the major endpoint for assessing human and 454 

environmental health impacts of Hg. MeHg concentrations were consistently below 1% of total Hg 455 

(THg) in all samples (Table S7.5), suggesting low methylation of Hg(II) in these soils for these crops. 456 

Moreover, the probable daily intake (PDI) for MeHg in these crops (<0.001 µg kg-1 day-1) or the sum of 457 

their dietary intakes (0.0010±0.0016 µg kg-1 day-1) are two orders of magnitude below the USEPA 458 

reference dose (RfD) for MeHg of 0.1 µg kg-1 day-1 (USEPA, 2001). This contrasts data from rice grown 459 

in Hg contaminated areas, which is known to accumulate MeHg (via root uptake) due to the capacity 460 

of rice paddies to host anoxic conditions known to produce this highly bioaccumulative species 461 

(Zhao et al., 2016; 2020).   462 
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While less toxic than MeHg, inorganic Hg has been associated with health effects on gastrointestinal, 463 

renal, and nervous systems (Ha et al., 2017; Basu et al., 2023). Due to the low MeHg concentrations, 464 

inorganic Hg exposures were assessed using THg concentrations and these values were adjusted for 465 

the lower absorption rates of inorganic Hg (7%; WHO, 1990); this adjustment allows direct 466 

comparison of inorganic Hg/THg exposures to the MeHg RfD value (Zhao et al., 2019). While PDI 467 

values for inorganic Hg/THg were higher in all edible crop tissues examined (individual crop range: 468 

0.0001 µg kg-1 day-1 in maize to 0.016 µg kg-1 day-1 in cassava leaves; dietary sum: 0.023±0.007 µg kg-1 469 

day-1; Table S6.1), they are again below the MeHg RfD value. Hence, there is little health risk to the 470 

local population from Hg levels ingested during typical consumption of the studied 471 

tubers/grains/nuts. 472 

Cassava leaves are commonly consumed in various regions including Nigeria (El-Sharkawy, 2003); 473 

hence, the high inorganic Hg in cassava leaves we observed in particular could pose some risk. 474 

Without direct data for estimated dietary intake of cassava leaves in Nigeria, we chose to assume a 475 

conservative daily intake rate (50 g day-1; Section S6). Latif and Müller (2015), report that cassava 476 

leaves are consumed up to 500 g day-1 in countries such as Zaire and the Democratic Republic of 477 

Congo, which is an order of magnitude higher than our assumed daily intake rate. Consumption of 478 

contaminated cassava leaves at the observed levels of contamination and at rates of 500 g day-1 479 

would surpass RfD levels. Despite the reported health benefits of eating cassava leaves (Latif and 480 

Müller, 2014), we suggest dietary caution when consuming cassava foliage grown in close proximity 481 

to ASGM, and this likely applies for other edible plant foliage.   482 

Although maize and peanut leaves are not typically consumed by humans, they are frequently used 483 

as fodder for livestock (Samkol, 2018; Abdul Rahman et al., 2022). This introduces an additional layer 484 

of concern, as the ingestion of Hg-laden plants by livestock can lead to the accumulation of Hg in 485 

livestock kidneys and liver (Verman et al, 1986; Crout et al., 2004). Human exposure through the 486 

consumption of Hg contaminated meat and dairy/egg products is an additional understudied 487 

potential human exposure pathway.  488 

Supplement link 489 

The supplementary information is available at XXXX and contains all complementary 490 

information and all data used within study as well as extended details on the study methods. 491 

No specialised modelling code was used to perform the calculations used and all data can 492 
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be recreated from the raw data and equations provided in the supplement. 493 
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